Refining the diagnostic quality of the abdominal fetal electrocardiogram using the techniques of artificial intelligence

نویسندگان

  • Radek MARTINEK
  • Jan ZIDEK
چکیده

This article deals with utilization of the combination of the fuzzy system and artificial intelligence techniques, called the Adaptive Neuro Fuzzy Inference System ANFIS, with the aim to refine the diagnostic quality of the abdominal fetal electrocardiogram FECG. Within the scope of the experiments carried out and based on the ANFIS structure the authors created a complex system for removing the undesirable mother’s MECG degrading the abdominal FECG. Current research shows that the application of the conventional systems for enhancing the diagnostic quality of the abdominal FECG faces a series of problems (e.g. non-linear character of the task to solve, computational complexity of RLS algorithms, etc.). The need for a higher diagnostic quality of the abdominal FECG is reflected in the authors’ intention to utilize the designed system for the latest intrapartum monitoring method, called ST analysis. In terms of this advanced method, the aspect subjected to a diagnostic analysis is the ST segment of the FECG curve. The results indicate that the system utilizing ANFIS shows better experimental results than the conventional systems based on the LMS or RLS adaptive algorithms. The proposed adaptive system aims to clear any doubts in evaluation of the results of ST analysis while using a non-invasive method of external monitoring. Streszczenie. W artykule przedstawiono wykorzystanie fuzji metod: zbiorów rozmytych i sztucznej inteligencji ANFIS do poprawy jakości diagnostyki elektrokardiografii płodu. Głównym problemem jest usunięcie sygnału pochodzącego od matki który znacznie przewyższa sygnał płodu. (Poprawa jakości sygnału elektrokardiogramu płodu przy wykorzystaniu narzędzi sztucznej inteligencji)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTELLIGENT TECHNIQUE OF CANCELING MATERNAL ECG IN FECG EXTRACTION

In this paper, we propose a technique of artificial intelligence called adaptive neuro fuzzy inference system (ANFIS) for canceling maternal electrocardiogram (MECG) in fetal electrocardiogram extraction (FECG).This technique is used to estimate the MECG present in the abdominal signal of a pregnant woman. The FECG is then extracted by subtracting the estimated MECG from the abdominal signal. P...

متن کامل

Use of artificial intelligence techniques to predict distribution of heavy metals in groundwater of Lakan lead-zinc mine in Iran

Determining the distribution of heavy metals in groundwater is important in developing appropriate management strategies at mine sites. In this paper, the application of artificial intelligence (AI) methods to data analysis,namely artificial neural network (ANN), hybrid ANN with biogeography-based optimization (ANN-BBO), and multi-output adaptive neural fuzzy inference system (MANFIS) to estima...

متن کامل

Evaluation of Flow Cytometry and Kleihauer Techniques for Quantification of Fetomaternal Hemorrhage: A Prospective Cohort Study in Southwestern Iran

Background: Quantification of fetal red blood cells (RBCs) in maternal blood is of great importance to calculate appropriate dose of post-deliver anti D immunoglobulin in a rhesus D (RhD)-negative woman. Objective: The aim of this study is to evaluate a direct immunofluorescence flow cytometry technique in artificial and clinical samples and compared it t...

متن کامل

Diagnostic Value of Non-stress Test Interpreted by Smart Interpretive Software

Background and aim: Using appropriate methods for the assessment of fetal health including non-stress test during high-risk pregnancies due to possible placental insufficiency is of paramount importance. Due to complexity in medical decisions, using information systems is being increased to support complex medical decisions. We conducted this study to measure the diagnostic value of non-stress ...

متن کامل

A PCA/ICA based Fetal ECG Extraction from Mother Abdominal Recordings by Means of a Novel Data-driven Approach to Fetal ECG Quality Assessment

Background: Fetal electrocardiography is a developing field that provides valuable information on the fetal health during pregnancy. By early diagnosis and treatment of fetal heart problems, more survival chance is given to the infant.Objective: Here, we extract fetal ECG from maternal abdominal recordings and detect R-peaks in order to recognize fetal heart rate. On the next step, we find a be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012